
Notizie
Biologia Molecolare delle Cellule Staminali - AA 2024-2025
Il corso 2024-25 inizierà martedì 1 ottobre 2024
Orario lezioni: Martedì e Giovedì, ore 16-18
Aula Sergi CU026 (Antropologia)
Links di riferimento:
Biologia Molecolare delle Cellule Staminali / Molecular Biology of Stem Cells (ITA/ENG) (E-Learning)
Laurea Magistrale (MS Degree) Genetics and Molecular Biology
ITALIANO
LINEE DI RICERCA
Il mio campo di ricerca concerne la caratterizzazione dei meccanismi molecolari che sono alla base delle funzioni cellulari durante il differenziamento e lo sviluppo, al fine di comprendere come questi meccanismi siano alterati in condizioni patologiche e come possano essere utilizzati in terapia. In particolare, il mio interesse primario è la molecola dell’RNA. Per decenni all’RNA è stato unicamente attribuito un ruolo passivo, come mero “messaggero” dell’informazione genica, o strutturale, come “impalcatura” dei ribosomi. Negli ultimi anni è invece emerso un crescente numero di piccoli RNA non codificanti, in grado di regolare attivamente l’espressione genica e condizionare significativamente importanti processi cellulari.
Durante gli anni di post-doc alla Rockefeller University di New York (USA) ho dedicato la mia ricerca alla funzione dei microRNA nelle cellule staminali embrionali, come sistema modello per ricapitolare le primissime fasi di sviluppo embrionale, acquisendo notevole esperienza nelle tecniche di coltura e manipolazione. Dal giugno 2009 a ottobre 2010 ho ricoperto la posizione di direttore del Centro di Derivazione di cellule staminali e iPS della Rockefeller University (“Rockefeller University Stem Cell Derivation Core”) con compiti di gestione del Centro, responsabilità sulla qualità delle nuove linee cellulari, supervisione di personale tecnicoe presentazione dei servizi offerti dal Centro alla comunità scientifica.
Le mie linee di ricerca presenti includono la derivazione di cellule iPS paziente specifiche per la creazione di nuovi sistemi modello per lo studio di malattie neurodegenerative in vitro. Le cellule iPS (induced Pluripotent Stem cells) sono generate tramite riprogrammazione (“reprogramming”) di cellule somatiche, ottenuta grazie all’overespressione di fattori di staminalità detti reprogramming factors (RFs). Questi fattori sono in grado di cambiare radicalmente i profili di espressione genica delle cellule somatiche, attivando i geni propri delle cellule staminali e reprimendo i geni del differenziamento. In tal modo le cellule acquistano proprietà e potenzialità propri delle cellule staminali embrionali, inclusa la capacità di differenziare in vitro e in vivo nei vari derivati dei tre foglietti embrionali. Il grande vantaggio delle iPS sta nel fatto che esse possono essere derivate da pazienti portanti mutazioni e differenziate in vitro nei tessuti di interesse, rappresentando ottimi sistemi modello per lo studio in vitro della base molecolare e cellulare delle malattie a base genetica.
Al momento attuale, mi sto occupando dello studio di malattie neurodegenerative, quali la Sclerosi Laterale Amiotrofica (SLA), utilizzando come sistemi modello iPS derivate da individui sani e da pazienti SLA con diverse mutazioni che colpiscono geni coinvolti nella biogenesi e funzionamento dell'RNA. Inoltre, il mio laboratorio sta sviluppando modelli tridimensionali del sistema nervoso mediante stampa 3D (bioprinting) di neuroni derivati da cellule iPS umane.
ENGLISH
RESEARCH INTERESTS
My field of research concerns the characterization of the molecular mechanisms that underlie cell function during differentiation and development, in order to understand how these mechanisms are altered in pathological conditions and how they can be used in therapy. In particular, my primary interest is the RNA molecule. For decades, RNA was only given a passive role as a mere "messenger" of genetic information, or structural, such as "scaffold" of the ribosome. In recent years, a growing number of small non-coding RNAs has been discovered, that are able to actively regulate gene expression and significantly affect important cellular processes.
During the years of post-doc at Rockefeller University in New York (USA) I have dedicated my research to the function of microRNAs in embryonic stem cells as a model system to recapitulate the very early stages of embryonic development, acquiring considerable experience in culture techniques and manipulation. From June 2009 to October 2010 I held the position of director of the Rockefeller University Stem Cell Derivation Core, with responsibility for management of the Centre and the quality of new cell lines, supervision of the staff and presentation of services offered by the Centre to the scientific community.
My present research lines include the derivation of patient-specific iPS cells for the creation of new model systems for the study of neurodegenerative diseases in vitro. IPS cells (induced Pluripotent Stem Cells) are generated through reprogramming of somatic cells by the ectopic expression of reprogramming factors (RFs). These factors are capable of radically changing the gene expression profiles of somatic cells, activating stem cell genes and repressing differentiation genes. In this way, the cells acquire the properties and potential of embryonic stem cells, including the ability to differentiate in vitro and in vivo in various derivatives of the three embryonic germ layers. The great advantage of iPS cells is that they can be derived from patients carrying mutations and differentiated in vitro into tissues of interest, represent excellent model systems for the study of the molecular and cellular basis of genetic diseases.
At present, I am working on neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS), using as model systems iPS cells derived from healthy individuals and from patients with ALS mutations affecting genes involved biogenesis and function of RNA. Moreover, my laboratory is developing tridimensional models of the nervous system by 3D bioprinting of neurons derived from human iPS cells.
RESEARCHER IDENTIFIERS
ORCID ID: 0000-0001-9999-7223
Scopus Author ID: 9638433400
Researcher ID: A-3860-2012
Orari di ricevimento
Prendere appuntamento con il docente scrivendo una e-mail all'indirizzo: alessandro.rosa@uniroma1.it
Curriculum
ESPERIENZE LAVORATIVE
2019-OGGI Professore Associato
Sapienza Università di Roma
Dip di Biologia e Biotecnologie “Charles Darwin”
P.le Aldo Moro 5, Rome, ITALY
SSD: Bio/11 - Biologia Molecolare
2011-2019 Ricercatore Universitario
Sapienza Università di Roma
Dip di Biologia e Biotecnologie “Charles Darwin”
P.le Aldo Moro 5, Rome, ITALY
SSD: Bio/11 - Biologia Molecolare
2009-2010 Direttore del Stem Cell Derivation Core - Rockefeller University
The Rockefeller University
1230 York Avenue, New York, NY USA
▪ Center for the derivation of human embryonic stem cell (hESC) and human induced pluripotent stem cell (hiPS) lines with a normal as well as diseased genetic background.
2007-2010 Postdoctoral Associate
The Rockefeller University
1230 York Avenue, New York, NY USA
Supervisor: Prof. Ali H. Brivanlou
EDUCAZIONE
2003-2007 Dottorato di ricerca in Genetica e Biologia molecolare
Sapienza Università di Roma
Dip di Genetica e Biologia Molecolare
P.le Aldo Moro 5, Rome, ITALY
1998-2003 Laurea in Scienze Biologiche – 110/110 e lode
Sapienza Università di Roma
Facoltà di Scienze MMFFNN
P.le Aldo Moro 5, Rome, ITALY
ATTIVITA’ LAVORATIVE
Premi:
Riconoscimento di eccellente insegnamento universitario. A.A. 2017-18 e 2020-21. Dalla Facoltà di Scienze MMFFNN al top 5% del corpo docente.
PNI (Premio Nazionale dell’Innovazione) 2017: menzione speciale per il miglior progetto per le pari opportunità – progetto di startup HoMoLoG.
Primo premio business plan competition StartCup Lazio 2017 - progetto di startup HoMoLoG .
Vincitore del Bioeconomy Rome 2012 Award “For the most innovative Italian intuitions of 2011 in the field of biomedical sciences”. CNCCS (Collezione Nazionale di Composti Chimici e Centro Screening).
Vincitore del RNA Society 2008 poster award nella categoria “Genetics and Development”.
Vincitore di una post-doctoral fellowship “Long term 2008 Human Frontier Science Program (HFSP)”.
Vincitore di una post-doctoral fellowship “The New York Stem Cell Foundation (NYSCF)” (2008). (Declinata in favore della “Long term 2008 Human Frontier Science Program, HFSP)”.
Vincitore del premio SIBBM 2006 (Società Italiana di Biofisica e Biologia Molecolare).
Attività editoriale:
2021-oggi Associate Editor of Stem Cell Research (specialty section of Frontiers in Cell and Developmental Biology, Frontiers in Genetics, Frontiers in Oncology and Frontiers in Bioengineering and Biotechnology).
2018–oggi Editor di Stem Cells International (Hindawi Publishing Corporation; E-ISSN:1687-9678).
2018-2021 Guest Editor per uno special issue “The RNA revolution in embryonic development and cell differentiation in health and disease”. Frontiers in Cell and Developmental Biology.
Presentazioni su invito Più di 20 convegni o seminari a carattere nazionale o internazionale.
Grants 2024-2025. AriSLA Call for projects on ALS research. Pilot Grant. “StressHUD, Investigating the Mechanisms Underlying Oxidative Stress-Induced HuD Expression in Sporadic ALS”. PI
2023-2025. PRIN PNRR 2022. Generation and characterization of a new in vitro model for GNAO1 encephalopathy based on human iPS cells and cortical organoids. PI
2023-2025. PRIN 2022. HSPB3: understanding its role in the pathophysiology of the neuromuscular system and testing its druggability for future therapeutic purposes. Co-PI (PI: Serena Carra).
2022-2025. PNRR. CN3 Spoke 3. National Center for Gene Therapy and Drugs based on RNA Technology – Neurodegeneration. PI per Sapienza Università di Roma.
2023-2026. AriSLA Call for projects on ALS research. Full Grant. Unraveling the role of SUMO2/3 as a modifier of TDP-43 solubility: a new therapeutic avenue for ALS (SUMOsolvable). FG_1/2022. Co-PI (PI: Serena Carra)
2022-2025. Muscular Dystrophy Association Research Grant 22. HSPB3: a promising candidate for the maintenance of the neuromuscular system. 952598. Co-PI (PI: Serena Carra)
2021-2022. Regione Lazio - POR FESR LAZIO 2014-2020 “PROGETTI DI GRUPPI DI RICERCA 2020”. Soluzione Integrata di Microscopia Brillouin Avanzata (SIMBA) (Integrated Solution of Advanced Brillouin Microscopy) (project number: A0375-2020-36389). PI
2021-2023. AFM Telethon. Research Grants 2021. Unraveling HSPB3 physiological functions to understand its implication in neuromuscular diseases. Co-PI (PI: Serena Carra)
2021-2024. Italian Ministry of Health. Bando Ricerca Finalizzata 2019. Dissecting the role of HCN1 in Developmental and Epileptic Encephalopathy (DEE) by exploiting patient-specific models of cerebral cortex development in vivo and in 3D cortical organoids. Co-PI (PI: Simona Lodato)
2019-2021. Istituto Pasteur Italia - Fondazione Cenci Bolognetti. Call for projects 2019. Study of the role of RNA-binding proteins in the neurodegenerative disease Amyotrophic Lateral Sclerosis. PI
2019-2021. Sapienza University “Progetto di Ateneo” 2018. Identification and characterization of RNA binding proteins and non-coding RNAs with a role in human neural specification and neurodegenerative diseases. PI
2017-2018. AriSLA Pilot Grant 2016. StressFUS - Impairment of the stress response by mutant FUS in iPSC-derived human ALS motoneurons. PI
Brevetti RM2007A000595
Title: Use of miRNA and siRNA in therapy
Inventors: Irene Bozzoni, Alessandro Fatica, Alessandro Rosa
Dep. 15-11-2007
RM2003A000335 (Foreign Ext. PCT/IT04/00038)
Title: Construction of a new vector for siRNA in vivo expression
Inventors: Irene Bozzoni, Michela Denti, Alessandro Rosa
Dep. 9-7-2003
Patent licensed to Promega Corporation for the commercialization of the product GeneClip™ U1 Hairpin Cloning Systems.
ULTERIORI INFORMAZIONI
Pubblicazioni
>70 pubblicazioni in riviste internazionali indicizzate in Scopus e/o WOS
Circa 4.000 citazioni (Scopus)
H index: 29
Pubblicazioni più rilevanti
Silvestri B, Mochi M, Mawrie D, de Turris V, Colantoni A, Borhy B, medici M, Anderson EN, Garone MG, Zammerilla CP, Simula M, Ballarino M, Pandey UB & Rosa A (2024) HuD impairs neuromuscular junctions and induces apoptosis in human iPSC and Drosophila ALS models. Nat Commun 15: 9618. Doi:10.1038/s41467-024-54004-8
Garone, M. G., Salerno, D. & Rosa, A. 2023. Digital color-coded molecular barcoding reveals dysregulation of common FUS and FMRP targets in soma and neurites of ALS mutant motoneurons. Cell Death Discov 9, 33. doi:10.1038/s41420-023-01340-1.
Garone, M.G., Birsa, N., Rosito, M., Salaris, F., Mochi, M., de Turris, V., Nair, R.R., Cunningham, T.J., Fisher, E.M.C., Morlando, M., Fratta, P., Rosa, A., 2021. ALS-related FUS mutations alter axon growth in motoneurons and affect HuD/ELAVL4 and FMRP activity. Commun Biol 4, 1025. doi:10.1038/s42003-021-02538-8
Brighi, C., Salaris, F., Soloperto, A., Cordella, F., Ghirga, S., de Turris, V., Rosito, M., Porceddu, P.F., D’Antoni, C., Reggiani, A., Rosa, A., Di Angelantonio, S., 2021. Novel fragile X syndrome 2D and 3D brain models based on human isogenic FMRP-KO iPSCs. Cell Death and Disease 12, 498. doi:10.1038/s41419-021-03776-8
Garone, M.G., Alfano, V., Salvatori, B., Braccia, C., Peruzzi, G., Colantoni, A., Bozzoni, I., Armirotti, A., Rosa, A., 2020. Proteomics analysis of FUS mutant human motoneurons reveals altered regulation of cytoskeleton and other ALS-linked proteins via 3'UTR binding. Sci Rep 10, 11827. doi:10.1038/s41598-020-68794-6
De Santis, R., Alfano, V., de Turris, V., Colantoni, A., Santini, L., Garone, M.G., Antonacci, G., Peruzzi, G., Sudria-Lopez, E., Wyler, E., Anink, J.J., Aronica, E., Landthaler, M., Pasterkamp, R.J., Bozzoni, I., Rosa, A., 2019. Mutant FUS and ELAVL4 (HuD) Aberrant Crosstalk in Amyotrophic Lateral Sclerosis. Cell Rep 27, 3818–3831.e5. doi:10.1016/j.celrep.2019.05.085
De Santis, R., Garone, M.G., Pagani, F., de Turris, V., Di Angelantonio, S., Rosa, A., 2018. Direct conversion of human pluripotent stem cells into cranial motor neurons using a piggyBac vector. Stem Cell Research 29, 189–196. doi:10.1016/j.scr.2018.04.012
De Santis, R., Santini, L., Colantoni, A., Peruzzi, G., de Turris, V., Alfano, V., Bozzoni, I., Rosa, A., 2017. FUS Mutant Human Motoneurons Display Altered Transcriptome and microRNA Pathways with Implications for ALS Pathogenesis. Stem Cell Reports 9, 1450–1462. doi:10.1016/j.stemcr.2017.09.004
Lenzi, J., Pagani, F., De Santis, R., Limatola, C., Bozzoni, I., Di Angelantonio, S., Rosa, A., 2016. Differentiation of control and ALS mutant human iPSCs into functional skeletal muscle cells, a tool for the study of neuromuscolar diseases. Stem Cell Research. doi:10.1016/j.scr.2016.06.003
Lenzi, J., De Santis, R., de Turris, V., Morlando, M., Laneve, P., Calvo, A., Caliendo, V., Chiò, A., Rosa, A., Bozzoni, I., 2015. ALS mutant FUS proteins are recruited into stress granules in induced Pluripotent Stem Cells (iPSCs) derived motoneurons. Dis Model Mech 8, 755–766. doi:10.1242/dmm.020099
Rosa, A., Brivanlou, A.H., 2011. A regulatory circuitry comprised of miR-302 and the transcription factors OCT4 and NR2F2 regulates human embryonic stem cell differentiation. EMBO J 30, 237–248. doi:10.1038/emboj.2010.319
Rosa, A., Spagnoli, F.M., Brivanlou, A.H., 2009. The miR-430/427/302 Family Controls Mesendodermal Fate Specification via Species-Specific Target Selection. Dev Cell 16, 517–527. doi:10.1016/j.devcel.2009.02.007
Rosa, A., Ballarino, M., Sorrentino, A., Sthandier, O., De Angelis, F.G., Marchioni, M., Masella, B., Guarini, A., Fatica, A., Peschle, C., Bozzoni, I., 2007. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proc Natl Acad Sci USA 104, 19849–19854. doi:10.1073/pnas.0706963104
Fazi, F., Rosa, A., Fatica, A., Gelmetti, V., De Marchis, M.L., Nervi, C., Bozzoni, I., 2005. A Minicircuitry Comprised of MicroRNA-223 and Transcription Factors NFI-A and C/EBPα Regulates Human Granulopoiesis. Cell 123, 819–831. doi:10.1016/j.cell.2005.09.023